Фрактали

Фрактал (лат. fractus — подрібнений, дробовий) — нерегулярна, самоподібна структура. В широкому розумінні фрактал означає фігуру, малі частини якої в довільному збільшенні є подібними до неї самої. Термін фрактал увів 1975 року Бенуа Мандельброт.

Бенуа Мандельброт

Бенуа Мандельброт (*20 листопада 1924 — †14 жовтня 2010) — французько-американський математик єврейського походження, засновник фрактальної геометрії. Його ім'я відоме багатьом в зв'язку з фракталом, названим на його честь, — множиною Мандельброта. Математик також займався економікою, теорією інформації, космологією та іншими науками. Мандельброт є лауреатом премії Вольфа з фізики у 1993 році, Японської премії за інноваційні ідеї в науці у 2003 році та інших числених нагород.

Книги Мандельброта:
Фрактальная геометрия проироды
Фракталы и хаос
(Не)послушные рынки. Фрактальная революция в финансах

Історія
Об'єкти, які тепер називаються фракталами, досліджувались задовго до того, як їм було дано таку назву. В етноматематиці, наприклад в роботах Рона Еглаша «Африканські Фрактали», задокументовано поширені фрактальні геометричні фігури в мистецтві тубільців. В 1525 році німецький митець Альбрехт Дюрер опублікував свою працю Керівництво Художника, один із розділів якої має назву «Черепичні шаблони, утворені пентагонами». Пентагон Дюрера багато в чому є схожим на килим Серпінського, але замість квадратів використовуються п'ятикутники. Джексон Поллок (американський експресіоніст 50-тих років) малював об'єкти, дуже схожі на фрактали.
Ідею «рекурсивної самоподібності» було висунено філософом Лейбніцом, який також розробив багато з деталей цієї ідеї. В 1872 Карл Веєрштрас побудував приклад функції з неінтуітивною особливістю, скрізь неперервної, але ніде недиференційовної — графік цієї функції тепер би називався фракталом. В 1904 Хельга Фон Кох, незадоволений занадто абстрактним та аналітичним означенням Веєрштраса, розробив більш геометричне означення схожої функції, яка тепер має назву сніжинки Коха. Ідею самоподібних кривих було далі розвинено Полєм П'єром Леві, який у своїй роботі Криві та поверхні на площині та у просторі, які складаються із частин, схожих на ціле, виданій 1938 року, описав нову фрактальну криву, відому тепер як Крива Леві.
Ґеорг Кантор навів приклади підмножин дійсних чисел із незвичними властивостями — ці множини Кантора тепер також визнаються як фрактали. Ітераційні функції на комплексній площині досліджувались в кінці 19 та на початку 20 століття Анрі Пуанкаре, Феліксом Кляйном, П'єром Фату та Ґастоном Жюліа. Проте за браком сучасної комп'ютерної графіки у них забракло засобів відобразити красу багатьох із відкритих ними об'єктів.
В 1960-их роках, Бенуа Мандельброт почав дослідження самоподібності в своїх роботах, наприклад Яка довжина узбережжя Британії? Статистична самоподібність та дробова розмірність. Ця доповідь базувалась на ранніх роботах Луі Фрая Річардсона. В 1975 році Мандельброт використав слово фрактал як назву для об'єктів, розмірність Хаусдорфа яких є більшою за топологічну розмірність. Він проілюстрував своє математичне означення захоплюючими зображеннями, зробленими за допомогою комп'ютера. Ці зображення привернули велику увагу; багато з них базувалися на рекурсії, що призвело до появи поширеного розуміння слова фрактал.

Фрактал Мандельброта




Фрактали і музика


Как вы уже знаете, сейчас довольно часто фракталы,и в частности фрактальная графика, используется в художественной деятельности. […]

Читати далі…

Фрактальные антенны


На сегодняшний день, в мире существует великое множество различных видов антенн, в зависимости от назначения и области применения они имеют различную конструкцию. […]

Читати далі…